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Abstract

This paper discusses the relative merits of discrete versus continuous perspectives on innovation, technical change, and
economic growth. It discusses the innovation time series literature in some detail to extract the continuous and clustering
properties of the historical record on innovation. It then proposes a mosaic/avalanche model based on percolation theory and
self-organized criticality to address this question.
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1. Introduction

Is the process of technological innovation and eco-
nomic growth better characterized as one of contin-
uous and incremental change, or rather as marked by
discrete events and quantum jumps? Different scholars
have advocated each point of view, sometimes simul-
taneously. Is there a mechanism whereby a continuous
stream of activity is converted into an intermittent or
pulsating process, or conversely, one in which discrete
events induce smooth unfoldings? To some extent
such questions are a matter of levels, with aggregation
leading to the appearance of smoothness and disag-
gregation revealing the graininess of the underlying
system. Yet in other cases small microscopic events
do seem to have significant macroscopic implications.
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In this paper, I want to address the following ques-
tions. First, is the innovation process better regarded
as a discrete one producing distinct and qualitatively
different entities at identifiable points in time? If so,
what is the time pattern of their production? Second,
what is the relationship between the innovation pro-
cess and the sectoral and aggregative state of an econ-
omy? Does the possible discreteness of the innovative
process translate into particular characteristics of the
meso- and macroeconomy?

The paper proceeds as follows. In the next section,
I briefly review the literature on the history of innova-
tions and their statistical properties. This is followed
by a section reviewing some statistical studies I have
been involved with on this issue that challenge a num-
ber of published results. The methodological basis
for this critique is discussed and some implications
of the analyses are drawn for the characterization of
the innovation process.
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The following section examines the nexus between
innovation and sectoral and aggregate productivity
growth and macroconomic dynamics. I then briefly
discuss the historical record of sectoral change and
aggregate growth and the ways in which researchers
have attempted to come to terms with it statistically
and mathematically.

The final section sketches a framework for dealing
with discontinuous change, still at a very prelimi-
nary stage, which I call the mosaic and avalanche
theory. Mosaic refers to the fact that the innovation
process consists of many small steps that need to be
assembled to create a final ‘Gestalt’ before an oper-
ational innovation is achieved. The dynamics of this
process is modelled on the lines of percolation and
thus involve aphase transition, or, in the words of
Hegel, a transformation of quantity into quality. This
allows us to address the question of how a more or
less constant stream of innovation activity can trigger
clusters of innovation, as well as how innovation ac-
tivity can focus itself or be induced as the outlines of
the Gestalt emerge. Furthermore, it provides a natural
framework for differenttrajectories of technological
development to emerge, converge or cross-fertilize,
and for science to act as an attractor for subsequent
technological development.

The avalanche aspect addresses the unpredictable
character of the extent of sectoral diffusion of an
innovation and thus ultimately of the magnitude of
its effects on the overall economy. Following the
literature on self-organized criticality (SOC), these
diffusion effects results from chain-reactions of local
interaction subject to non-linear thresholds and can
be used to endogenize (at least in a statistical sense)
the growth waves initiated by an innovation.

1.1. Incrementalism versus radicalism in
innovation studies

Traditional neoclassical theory of growth and
technical change is most closely associated with a
thoroughgoing incrementalist approach. Technical
change is envisioned as the smooth shift in time
(at an exogenously given rate) of a smooth, substi-
tutable production function. There is no room in fact
for distinguishable, discrete technologies (does one
identify a technology with a point on the production
function, or the entire curve?). In some sense they

have been aggregated into one macrotechnology.1

This has changed to some extent with the advent of
Schumpeterian endogenous growth models (initiated
by Aghion and Howitt, 1992), which share many, if
not all, elements with an evolutionary perspective.
Technologies, as inSilverberg and Lehnert (1993),
are nodes on a directed graph, here the graph being
the very simplest case of a linear array.2 We do in-
deed perceive technologies as discrete entities in this
framework, although by assumption in the first in-
stance (as in Silverberg and Lehnert) and as derived
from an intertemporal perfect foresight equilibrium
argument based on patent-race reasoning (in Aghion
and Howitt), the stochastic arrival rate of these dis-
crete innovations is constant. In stochastic terms, this
represents a steady flow, but the realization is a Pois-
son jumping process. In AG, in fact, the whole econ-
omy performs these jumps, since technologies are
disembodied and there are no diffusion lags. In SL,
due to diffusion and intertechnological competition,
the aggregate effects demonstrate complex dynamics
as innovations propagate through the economy.

This highly simplified picture concentrates on the
salient aspects of the Schumpeterian vision: radical,
discrete innovations drive the economy. However,
we know from innovation studies that a considerable
part of technical change is due to so-called learning
effects, i.e. the accumulation of almost imperceptible
small increments of skill, design, and organizational
improvements. While the mechanism behind the var-
ious forms of technological learning (learning by
doing, learning by using) is not well understood, phe-
nomenologically it can be characterized by power-law
relationships, known as learning curves, of the form:

y = xα

wherey is some measure of performance (e.g. produc-
tivity, unit costs) andx is some measure of experience
(e.g. cumulative production). On this basis,Arrow
(1962)produced the first endogenous growth model,
and most of the endogenous growth literature à la

1 Indeed this was the conclusion of the famous Cambridge con-
troversies of the 1960s—an aggregate production function only
made sense when all sectoral technologies had the same technical
coefficients.

2 For a model also based on a directed graph of technologies
but allowing for branch points, seeVega-Redondo (1994).
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Romer, Lucas, etc. relies on some similar mechanism
(Solow, 2000). Once again, as in the ‘exogenous’
growth neoclassical literature, there are no identifi-
able ‘discrete’ technologies, and growth inevitably
takes the form of an exponential steady state.

Finally, the stochastic continuity of the Poisson
model can be ruptured by some notion of clustering
or punctuation of innovation at large time scales.
What meaning these should have statistically has
never been explicitly formalized. One interpretation
is that clusters of innovations occur more or less
periodically, in synchrony with purported 50 years
Kondratieff cycles of economic activity. A slightly
variant interpretation is that a particular phase of
long-term economic fluctuations triggers higher (rad-
ical) innovation activity due to a higher propensity
of risk taking (the ‘depression-trigger hypothesis’).
A more agnostic interpretation is that the underlying
stochastic process has a natural tendency to random
clustering at different time scales, independent of any
economic influences, much like earthquakes.

Economic history and the history of technology
of course have always suggested a close relationship
between emergent and dominant technologies and
the salient economic character of different epochs.
Whether these were formulated as ages of steam,
steel, electricity, the automobile, or the computer,
on the one hand, or the first, second, third industrial
revolutions on the other, this quasi-Marxian techno-
logical determinism has implicitly influenced much
historical thinking. Attempts to capture these effects
quantitatively have relied, e.g., on the methodology
of technological substitution (cf.Nakicenovic, 1987;
Grübler, 1990, 1998). In particular, large-scale in-
frastructural technologies (primary energy sources,
transport infrastructure such as canals, railroads, high-
ways, airways) display clear evidence of 50 years
replacement cycles and logistic diffusion.

Recently, the concept ofgeneral purpose technolo-
gies (GPT) has been coined to represent those inno-
vations whose influence becomes so pervasive that
they become significant inputs and sources of produc-
tivity growth in a large number of sectors and final
consumption goods (cf.Helpman, 1998). Although
these authors often fail to highlight the connection
of this concept with Schumpeter’s idea of radical
innovations, it is clear that this is a closely allied
notion.

The neo-Schumpeterian evolutionary literature has
placed particular emphasis on discontinuities in eco-
nomic development. However, in its formal imple-
mentations, this is not quite so obvious. The ‘standard’
model of evolutionary economic growth due toNelson
and Winter (1982)considers technologies as equiv-
alent to behavioural routines. Innovation takes place
in a characteristics space of technologies (labour and
capital coefficients) by jumping with a certain prob-
ability determined by R&D expenditures between
points (technologies) generated at random. The only
structure imposed on the space is the topology induced
by a technological distance metric. Since the technolo-
gies are capital-disembodied, no investment going be-
yond the original R&D is necessary, the productivity
effects of innovation are immediate and no diffusion
takes place, although imitation effects can lead to the
diffusion of the routine from one firm to another.

In the appreciative and applied evolutionary litera-
ture much has been made of the concepts of techno-
logical paradigm (Dosi, 1982)and natural trajectories
(Nelson and Winter, 1977). This is indeed an attempt
to impose additional structure on technology and dif-
ferentiate discrete interrelationships in technological
space from one another, if only ex post (empirical
evidence for such trajectories has been advanced by
Sahal, Saviotti and Leonard, e.g.). This should be
contrasted with the smooth, substitutable, unbounded
production possibility sets of neoclassical theory (but
is possibly related to the notion of localized learning
introduced byAtkinson and Stiglitz, 1969). Very lit-
tle in the way of insightful modelling has been done
in this regard without assuming the exogenous exis-
tence of parameterized trajectories (as inSilverberg
et al., 1988). A recent attempt in this direction is
the so-called history-friendly modelling approach
(Malerba et al., 1999), but again, one has the impres-
sion that too much explicit historical structure has
to be hardwired into the model first to get anything
plausible out of it.

1.2. The time pattern of radical innovations and
the size distribution of innovations in general

Schumpeter is the author most responsible for high-
lighting the role of radical innovations in economic
change. His theory of economic development posited
the existence of innovation clustering and bandwagon
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effects in investment to drive waves of creative de-
struction, i.e. periods of intense structural change and
productivity growth attendant on the introduction of
new products, processes, and forms of business orga-
nization. But already in 1940,Kuznets (1940)in his
review of Schumpeter’sBusiness Cycles, raised seri-
ous objections to the logical consistency and historical
plausibility of this perspective.

It was not until the 1970s, that any serious attempt
was made to examine the time pattern of radical in-
novations empirically.Mensch (1975)drawing on the
innovation data contained inJewkes et al. (1958)un-
dertook the first influential statistical analysis of in-
novation time series. While the test he used (a runs
test) was appropriate for testing his null hypothesis of
iid of the yearly count data, his treatment of the data
was challenged byClark et al. (1981). Indeed, all at-
tempts at compiling data on radical innovations have
been marred by definitional and dating problems. Is
there an objective definition of what constitutes a radi-
cal innovation? Is there an unambiguous way of dating
its time of introduction? Almost all major innovations
have gone through stages of development in different
times and places which make it difficult to determine
exactly when they have reached maturity and have at-
tained a recognizable and viable form. Their impact
on the economy also varies considerably as they pass
through more advanced stages of development. While
these ambiguities cast doubt on the reliability of any of

Fig. 1. Histogram of innovation time series for Baker and supersample data (x-axis: number of innovations per year,y-axis: percent of years).

the innovation time series employed in this literature,
as we shall later argue, this state of affairs can also be
made a rich source of dynamic structure which can be
used to elucidate the relationship between minor and
major innovations and advance our understanding of
the temporal unfolding of the innovation process.

Additional innovation time series have been com-
piled by Clark et al. (1981); Haustein and Neuwirth
(1982); van Duijn (1983); Kleinknecht (1987, 1990a)
on the basis of UK patent data published byBaker
(1976). An attempt to reconcile the disparities in these
series and compile a consistent super series is pre-
sented inSilverberg and Verspagen (2000). Statisti-
cal analysis of these time series has been undertaken
by Sahal (1974), Kleinknecht (1981, 1987, 1990a,b);
Solomou (1986); Silverberg and Lehnert (1993)and
most recentlySilverberg and Verspagen (2000).

It has not always been clear in this literature what
the appropriate null hypothesis should be. While
Mensch simply tested for iid in the yearly count data,
Kleinknecht and Solomou appliedz- and t-tests to
binary comparisons of adjacent sub-periods (chosen
with reference to their datings of long cycles in ag-
gregate growth). As pointed out bySilverberg and
Lehnert (1993), z- and t-tests are only appropriate
for normally distributed random variables. How-
ever, if the innovation process is thought of as a
stochastic but non-clustering point process, then the
time-homogeneous Poisson process is the obvious



G. Silverberg / Research Policy 31 (2002) 1275–1289 1279

null. In this case, the count data for various sub-periods
will certainly not be normally distributed, as his-
tograms readily reveal (Fig. 1). Furthermore, the use
of sub-periods is open to the objection that it does
not exclude the possibility of a selection bias of the
samples. If the criterion used to select the sub-periods
correlates somehow with the innovation data (even
though they themselves may be completely random),
the sub-periods will extract periods of higher and
lower mean realized activity and thus invalidate the
tests. And as Silverberg and Lehnert demonstrate us-
ing a dynamic model even on the assumption of inde-
pendent homogeneous Poisson innovation data, such
correlations with aggregate macroeconomic data (with
causality running from innovations to macrovariables)
are to be expected. Thus, ideally one should test the
null hypothesis of a homogeneous Poisson process
or other point process on the entire data set without
invoking sub-periods. This is what Sahal and Silver-
berg and Lehnert have done using non-parametric
methods, and what Silverberg and Verspagen have
done using parametric Poisson regression techniques.

All of these tests concur in rejecting the time-
homogeneous Poisson process (see top panel of
Table 1). A visual inspection of any of the time series,
however, immediately reveals that this could also be
due to the presence of an underlying trend (Fig. 2).
The second panel ofTable 1presents the results of
detrending the original series using an estimator of the
exponential growth rate of a non-time-homogeneous
Poisson process (seeSilverberg and Lehnert, 1993
for details on the techniques employed). Regardless
of one’s position with respect to the clustering issue,
this exercise has succeeded in uncovering one fact
that had been buried in the time series and obscured
by the clustering controversy—namely, that the rate
at which innovations have been made has itself been
increasing. Its own exponential rate of increase has
been in the range of 1/2 to 1% p.a., depending on the
series and the time period examined, with product
innovations increasing faster than process ones. This
is obviously one example of continuity of the innova-
tion process that also reinforces the notion of a robust
evolutionary time trend.

Kleinknecht, under the influence of the ‘depression-
trigger’ hypothesis of Mensch, has claimed that
clustering of innovations exists and occurs in the de-
pression or early recovery phases of 50 years long

Fig. 2. Raw data and four fitted regression models for supersample
and Baker data.

waves of general economic activity. This is a con-
ception of causality running from general economic
conditions to the propensity to innovate, to which
one can immediately take exception, e.g. by pointing
to the general decline in R&D activity in depres-
sion periods.3 In any event this does not result from
any inherent tendency of innovations to cluster by
themselves.4 Silverberg and Verspagen (2000)at-
tempt to test variants of a Schumpeterian clustering of
innovation hypothesis using Poisson regression tech-

3 To which Kleinknecht has replied that it is the relative propen-
sity to embrace radical versus incremental innovations that is at
issue here.

4 In contrast,Clark et al. (1981)have pointed to the common
origins of many innovations of the 1930s and 1940s in advances
in polymer chemistry as a reason for this particular cluster.
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Table 1
Non-parametric tests of Poisson distribution of original and detrended innovation time series

Original innovation time series

Time series Dispersion (d) H-test d.f. Growth rate (%) z-Trend

Baker (1976)all years
Product 741.08b 731.59b 273 0 18.11b

Process 465.67b 442.84b 273 0 7.93b

All 775.17b 815.21b 273 0 19.19b

Baker (1976)from 1769 on
Product 438.66b 465.69b 202 0 11.88b

Process 304.17b 308.17b 202 0 2.66b

All 422.05b 443.79b 202 0 11.09b

Kleinknecht (1990a); based onBaker (1976)
Product 336.27b 287.75b 201 0 7.11b

Process 236.94a 214.91 201 0 1.11
All 295.98b 305.15b 201 0 6.15b

Clark et al. (1981) 76.39 86.99a 64 0 0.77
Haustein and Neuwirth (1982) 336.20b 310.24b 211 0 6.68b

van Duijn (1983) 195.58b 171.79b 115 0 2.29a

Detrended innovation time series

Baker (1976)all years
Product 381.01b 380.79b 273 1.24 2.43a

Process 374.41b 378.44b 273 0.63 0.80
All 402.24b 426.68b 273 0.99 2.06a

Baker (1976)from 1769 on
Product 288.78b 320.09b 202 1.00 1.20
Process 288.14b 301.09b 202 0.28 0.05
All 298.49b 318.64b 202 0.72 0.66

Kleinknecht (1990a); based onBaker (1976)
Product 245.79a 235.12a 201 1.15 1.16
Process 234.56a 213.68 201 0.20 0.07
All 246.90a 266.72b 201 0.73 0.58

Clark et al. (1981) 76.43 86.41a 64 0.52 0.13
Haustein and Neuwirth (1982) 300.00b 264.48b 211 0.86 0.83
van Duijn (1983) 179.26b 166.48b 115 0.78 0.28

a Significant at 5% level.
b Significant at 1% level.

niques. By examining residuals of trends of different
orders, one can test for autoregressive ‘knock-on’
effects or periodicity. The main conclusion is that an
overdispersed model such as the negative binomial5

5 In the negative binomial model the Poisson arrival rate itself
become a random variable and is drawn independently from a
gamma distribution. While the mean remains the same, the variance
of the process will exceed the mean, i.e. the process becomes
overdispersed in comparison with a pure Poisson process.

with a polynomial trend of third order is preferred,
and that no obvious periodicity is present. While au-
toregressive elements remain, they show no tendency
for innovation shocks to persist.

There is another stream of research, which has at-
tempted to measure the size or significance distribu-
tion of innovations and scientific publications. This has
been approached using scientometric methods such as
citation analysis to measure the importance of a patent
or scientific publication by the number of times it is
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Fig. 3. Diffusion curves for a succession of innovations: slopes and saturations levels are endogeneous (the Fisher-Pry transformation
ln f/(1−f) is plotted on they-axis, wheref is the share in total output of each technology). Straight segments correspond to logistic diffusion.

subsequently cited. The work ofTrajtenberg (1990)
andvan Raan (1990)has demonstrated that these dis-
tributions are highly skewed and can be interpreted as
indicative of a fractal mechanism underlying intellec-
tual search and discovery.

1.3. Innovation and productivity growth

There is a vast literature discussing the relationship
between innovation and productivity growth. There are
three points, I want to emphasize in this connection:

1. Radical innovations can be seen as initiating
growth ‘pulses’ with random amplitudes and at
random times (Fig. 3). These pulses only translate
into macroeconomic productivity gains with con-
siderable delay due to diffusion lags. Even in such
a simple model asSilverberg and Lehnert (1993),
the pulses are realized with different speeds and
different amplitudes although the underlying inno-
vations each represent the same quantum improve-
ment over their predecessors. The net result of
this random (but steady) flow of pulses is complex
dynamics in aggregate variables, with fluctuations
over a range of time scales but more structure than
a random walk.

2. What a model like Silverberg and Lehnert (as well
as most other models) does not capture are the

cyclical productivity effects of major innovations
that are not directly derived from the innovations
themselves. In that radical innovations usually
initiate a surge in investment (justified or not) to
build up the necessary productive capacity and in-
frastructure associated with them, due to backward
linkages, multipliers and the inflation of general
animal spirits and effective demand, the rates of
utilization of other (traditional) sectors will go
up. This may lead to a cyclical boost in produc-
tivity (Okum’s law) even before the productivity
gains of the new technologies can be realized in
any significant way. Thus,Gordon’s (2000)scepti-
cism about whether the ‘new economy’ represents
more than just a cyclical effect may in one sense
be justified. In another sense, however, the cyclical
effect may well be a non-trivial result of the invest-
ment boom unleashed by that very ‘new economy’
which would otherwise not have happened. The
true dividends of the latter may not be realized for
decades, if at all, and may or may not be com-
parable to those of other radical innovations like
indoor plumbing and electricity.

3. These backward linkages in turn can induce real
technological productivity gains in other sectors
not directly related to the new technologies by ac-
celerating the rate in which these sectors go down
their learning curves (Verdoorn effect). Whether
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these gains should be attributed to the radical inno-
vations is a moot point, but they will certainly not
be picked up by growth accounting exercises as
such.

1.4. The mosaic/avalanche perspective on the
innovation process

As we have seen, even the identification and dat-
ing of radical innovations are fraught with difficulty.
Kleinknecht (1987, p. 61) illustrates this problem in
a revealing way with a quote fromBrockhoff (1972,
p. 283; Kleinknecht’s translation with my improve-
ments):

In 1818, K.V. Drais de Sauerborn presented his
Draisine, a kind of walk-drive bicycle (Laufrad).
In 1839, Mannilau demonstrated how wheels can
be driven by pedals, and in 1861 at the latest ped-
als were built into the Draisine. In 1867, they were
used on the front wheel by Michaux, and during
the next few years the bicycle industry in France
grew rapidly. A model of the bicycle approaching
the one we are accustomed to today was constructed
by Lawson in 1879, but a commercially success-
ful ‘safety bike’ was not introduced by Starley until
1885. If we take 1818, 1839 or 1861 alternatively
as years of invention, and 1867, 1879 or 1885 alter-
natively as years of basic innovation, we can obtain
nine different results for the time-span between in-
vention and innovation.

Undoubtedly, numerous other examples could be
found in the history of technology to reinforce this
point. What we normally perceive as a unitary en-
tity, a radical innovation, in reality is usually com-
posed of a number of smaller steps dispersed in
time, often involving borrowing from other fields
or dependent on specific unrelated advances in or-
der to make the final step possible. In the bicycle
case, we could add the availability of pneumatic tires
and ball bearings (and thus precision machining, the
precision grinding machine. . . ) as essential com-
plementary innovations without which the bicycle
boom of the 1890s would have been unthinkable.
The bicycle is not one innovation but a succession
of several smaller ones. In fact, our problem is not
reducible à la Schumpeter to just radical versus

incremental innovations; rather innovations come in
all sizes, suggesting a fractal structure to the process of
innovation.

Two lessons can be drawn from this example. First,
all major innovations are decomposable into smaller,
almost microscopic elemental steps, many of which
if not the majority being missteps lost to history. It
is these elemental steps that, I would posit, arrive in-
dependently and stochastically at an almost uniform
rate until such time as the final form or ‘Gestalt’
of the innovation becomes increasingly visible from
the random pieces of the mosaic. It is only then that
innovative activity accelerates and becomes more
purposeful and focused as the pack closes in for
the kill. Second, associated with each such innova-
tive trajectory is a threshold of performance, which,
when first surpassed, unleashes significant diffusion
into specific areas of the economy. Before that point
is reached, the innovation remains a prototype, an
object of tinkering and the consumption of hobby-
ists. As each threshold of performance is passed,
diffusion into ever-wider reaches of the economy
(differentiated e.g. by sector or income category) is
triggered.

This mechanism would thus appear to be a highly
non-linear phenomenon: first, the coalescence of the
innovation only when the mosaic is completed, and
second, the surge of diffusion as performance (or bet-
ter, price-performance) thresholds are surpassed. In
the following, I will sketch a modelling framework for
addressing these phenomena in an admittedly highly
abstract but, I would suggest, empirically non-trivial
manner.

Imagine a space of discrete technologies, with near-
ness corresponding to some measure of technological
proximity (Fig. 4). The bottom line represents such a
space in one dimension. In reality, of course, techno-
logical characteristics are so multitudinous that a much
higher dimensional space might be more appropriate.
And other topologies might be more suitable than the
lattice we will impose on it, such as some sort of net-
work structure. Periodic boundary conditions (pasting
the left and right edges together) are also sensible. The
vertical dimension represents the performance level of
each technological category (also seen as one dimen-
sional for simplicity). On this half plane, we regard
the elemental innovation process as the filling of a lat-
tice site with a certain probabilityP, i.e. as what is



G. Silverberg / Research Policy 31 (2002) 1275–1289 1283

Fig. 4. Percolation diagram in technology-performance space. Lattice sites are filled at random. A site is viable when it connects to the
baseline.

known as apercolation problem.6 We will consider a
filled site to represent an operational discovered tech-
nology if it is connected to the bottom of the diagram
by a filled path of such sites (using nearest-neighbour
connections, i.e. up, down, left, right).

6 In this case, we speak ofsite percolation, as opposed to work-
ing with the lines connecting nodes, known asbond percolation
(Grimmett, 1989; Stauffer and Aharony, 1994). For the purposes
of this paper, there is no obvious preference for one or the other
(and bond percolation can always be reformulated as a site model).
An early application of percolation theory to technological change
can be found inCohendet and Zuscovitch (1982). David and Foray
(1994)applied a hybrid site and bond percolation model to the stan-
dardization and diffusion problem in electronic data interchange
networks. Some recent applications of percolation theory to social
science problems includeSolomon et al. (1999), Goldenberg et al.
(2000), Gupta and Stauffer (2000)and Huang (2000).

The essential property of percolation is the be-
haviour of connected sets as a function of the (uniform
and independent) probability of occupation of sites.
On an infinite lattice (including the half plane) there
exists a threshold probability,Pc, below which there is
no infinite connected set and above which with proba-
bility 1 there is one (and only one) infinite connected
set. The probability that any site will belong to the
infinite connected set is obviously zero belowPc and
increases continuously and monotonically abovePc.7

For bounded lattices such as inFig. 3, the interesting
question is the probability of finding a connected path

7 For bond percolation it can be proven thatPc is exactly 1/2. For
site percolation it has been numerically established to be around
0.59.
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Fig. 5. Convergence, divergence and shortcuts, and two methods of defining a technology’s competitiveness.

spanning the lattice from the bottom edge to the top
one. This will increase rapidly and non-linearly in
the neighbourhood ofPc. A metaphor that may help
to sharpen intuition is to regard rain falling on a yard
as a percolation problem. After only a bit of rain the
yard consists of islands of wetness surrounded by dry
pavement. After more rain has fallen the yard sud-
denly flips to being islands of dryness surrounded by
wetness.

Suppose R&D is being undertaken in a region of
our space such asFig. 4. We imagine the search for
new technologies to be akin to firing ablunderbuss,
i.e. it cannot be targeted too closely to where we want
to go, but instead its shot is smeared out over a finite
region such as this one. Then there will be a proba-
bility P, which will be a function of the intensity of
search, that any site in the region will be hit. At this
point, there are two different perspectives we can adopt
about whether a given site represents successfully un-
covered technological knowledge (it does not repre-
sent an operational technology until it is connected by
a path of such sites to the bottom line):

1. The social construction of technology (SCT)
perspective says that any site we try is valid tech-
nological knowledge that can potentially be in-
corporated into a viable technology. Thus, in this
case, a tried site will immediately become occu-
pied and coloured red. The paths that result from
innovative search will be pure accidents of history.

2. The alternativetechnological determinism (TD)
perspective says that a tested site only represents
true technological knowledge if it accords with
the a priori underlying laws of nature. Thus, when
we try a site, we must then test whether it is
technologically valid. If it is, we fill it, if not,
we leave it blank. This is a bit like playing the
game minesweeper. The paths that result will be a
selection from the technologically possible ones.

The laws of nature can be represented by creating
a prepercolation on the lattice with some probability,
q. If q < Pc, then there will only be finite connected
sets (clusters) and technological change will eventu-
ally come to an end. If, however, nature is so bounti-
ful that q > Pc, then there will potentially be infinite
unbounded paths of innovation.8 And the largerq, the
denser the network of potentially viable technologies
will be. Social construction of technology results from
technological determinism in the limiting caseq = 1.

Fig. 5 shows how connected paths may represent
some relevant technological phenomena. First, any
connected path beginning on the bottom line can be
thought of as a natural trajectory. On the left, we
see two trajectories diverging from a common ori-
gin. In the middle, we see technological convergence
(e.g. the convergence of mechanical and electronic

8 If our technological space (the horizontal axis) is bounded,
this will not be true with probability 1, however.
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technologies to mechatronics, or optical and me-
chanical technologies to optronics). While the purely
technological performance characteristics of an op-
erational site are measured by its height above the
baseline, its economically relevanttechnological com-
petitiveness can be measured in different ways. The
point of introducing a separate technological compet-
itiveness is to reflect the ease of realization (related to
cost) of a given level of technological performance and
allow subsequent incremental innovations to operate.
Additionally, we may want the extent of parallelism
in the realization of a technology to be counted as an
advantage. Thus, I propose two separate measures of
competitiveness, both based on path length (ifL is a
path then let |L| be its length. The first measure is:

c1 = y2

|Ls|
whereLs is the shortest path connecting the site to the
baseline. If this path is simply a straight vertical line,
thenc1 = y. The more indirect the path, the more the
competitiveness is diminished. The second measure
corresponds to the current that would be extracted at
the site if we apply a 1 V potential difference between
the site and the baseline and set the resistance of a sin-
gle lattice nearest-neighbour link to one. If two paths

Fig. 6. Near disjoint regions represent inventions, far off discoveries science, and clusters that can never be connected to the baseline
science “fictions”.

L1 andL2 converge at a site, then:

c2 = y2
(

1

|L1| + 1

|L2|
)

For more complicated connections Kirchhoff’s laws
have to be applied.

A relevant technological analogy would be the
different generations of microprocessors. While each
generation represents a certain gain in performance,
it usually comes at a certain price. However, over
time that price declines as learning takes place in the
production and design of the product. This can be
captured in a natural way in our framework by al-
lowing subsequent shortcuts (which we identify with
incremental innovation) to reduce the length of the
connecting base of a site (rightmost inFig. 5). Thus,
we will allow innovation to take place both ahead
and behind the current best practice frontier, so that
radical and incremental innovation take place simulta-
neously. The best practice frontier at any given time,
shown in Fig. 6, consists of those operational (i.e.
discovered and connected) sites lying highest above
each point of the baseline. Also shown areinventions,
which are viable discovered but not yet operational
(i.e. connected) sites lying just above the frontier, and
scientific discoveries and fictions (the latter possibly
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Fig. 7. New innovations are generated with probabilityP in a regiond units above and below the technological frontier.

never being connectable to the operational network),
which lie considerably above the frontier.

Consistent with our blunderbuss vision of the search
process, we allow innovation to take place in a square
region of side lengthd0 centred around each point on
the frontier. The union of these regions creates a band
of innovative percolation extending ahead and behind
of the frontier (Fig. 7). Within this region, new sites

Fig. 8. A cluster of simultaneous invention occurs when a disjoint island of invention is suddenly joined to the frontier by a single
‘cornerstone’ innovation.

will be tested at random with some probabilityP. A
discovered site of course need not connect immedi-
ately with the operational network. It is this fact that
permits innovations of variable length (as measured
by the jump iny they entail) to occur spontaneously.
Thus, we obtain a natural explanation of innovation
clustering (but of the random kind), as shown inFig. 8.
This happens when a disjoint extended network of
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Fig. 9. Peaks above a certain threshold height trigger innovation attempts in neighbouring columns without themselves losing height. SOC?

discovered but not yet operational sites is finally con-
nected to the technological frontier.

The final element in our vision consists of an
avalanche mechanism. The intuition behind this is
that extreme advances in a technology can spill over
to adjacent technologies, which in turn can spill over
to their neighbours. This differs from normal tech-
nological interrelatedness, whereby advances at one
point in the frontier induce a probability of making
discoveries in neighbouring sites. We posit that when
a technological promontory such as shown inFig. 9
becomes so extreme (e.g. sticks out above its neigh-
bours on the frontier by more thanm), a breakthrough
mechanism is triggered, so that neighbouring sites
just above the frontier are also immediately tried.
In contrast to the analogous mechanism in sandpile
models of self-organized criticality,9 however, the
performance of the original site is not diminished
when it initiates spillovers, reflecting the fact that
knowledge is not lost in one area when it is acquired
in a related one. In the SCT case avalanches will
always propagate at least one site, since every site
tested is accepted. In the TD case, an avalanche may

9 Cf. Bak et al. (1987); Bak (1996). For the relationship between
SOC and percolation seeGrassberger and Zhang (1996).

be stopped in its tracks because there is always a
chance that a tested site will be rejected.

1.5. Conclusions and prospects for further research

The mosaic/avalanche model, as sketched above,
incorporates the following virtues into one relatively
homogeneous framework while making a minimal
number of assumptions regarding the structure of the
innovation process:

1. By invoking elemental innovation steps on a lattice
or other graph, complex structures of technologi-
cal advance and technological interrelatedness can
be generated endogenously, dispensing with ad
hoc assumptions about technological paradigms or
production possibility frontiers. The ambiguity of
invention and innovation datings is a natural fea-
ture of the mosaic perspective, but one amenable
to statistical analysis.

2. The fractal structure of the innovation record (i.e. a
distribution of innovation types from small, incre-
mental innovations to radical or paradigmatic ones)
results naturally from the percolation-induced
clustering and the manner in which nature’s pre-
percolation is uncovered by the R&D search pro-
cess. I conjecture that the resulting distribution of
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innovation sizes and the time pattern of innovation
activity will be highly skewed. A complete numer-
ical implementation of this model will have to be
undertaken to verify this conjecture.

3. Incremental innovation emerges as a by-product
of the R&D process (given that this is necessar-
ily also backward-looking from the perspective of
the technological frontier) as paths to operational
lattice sites shorten over time or alternative routes
are created.

4. The invention/innovation distinction emerges nat-
urally based on whether a discovered lattice site is
disconnected from the technological frontier or not.

5. Science and science fiction can be conceived as
extensions of the R&D process resulting from
search with higher values ofd. Science fictions
are clusters of technologically imaginable sites not
connectable in principle to the baseline, science
ones that are (Fig. 6).

6. The avalanche mechanism, making use as it does
of non-linear thresholds, translates the uneven ad-
vance of the technological frontier into bursts of
technological spillovers into related areas, and into
waves of diffusion.

What do we gain by invoking this framework? First,
it allows macroinnovations to emerge spontaneously
from the steady stream of small, elemental innova-
tions and discoveries. We do not need a separate the-
ory of each. And the macroinnovations will naturally
fall into some distribution of sizes, highly skewed and
unbounded from above.

How this mechanism proceeds in time is something
that can only be understood by actually simulating
such a percolation structure and relating it to existing
results in the literature. This is something, I hope to
do in the near future. To obtain an overall picture of
economic growth and sectoral change, it will be nec-
essary to round out the model with a component re-
lating innovations in each segment of the technology
space to diffusion pulses in investment and utilization
of the corresponding goods and services in the real
economy. I suspect that an appropriate model of such
sectoral diffusion pulses would also benefit from the
avalanche perspective. This would allow us to endog-
enize the range of intersectoral spillovers in economic
activity initiated by breakthroughs in a few specific
sectors. While such an approach might not provide a

detailed picture of the emergence of the current ‘new
economy,’ it might give us a perspective on when we
are entitled to speak of such things, how often they
occur, and how long they last.
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