Innovation from a micro-economic perspective
An introductory overview to some themes of the week

Luigi Marengo

St. Anna School of Advanced Studies, Pisa, l.marengo@sssup.it
Why Study the Economics of Science and Technology?

- Innovations in science and technology play an important role in economic growth.
- Thus, it is useful to understand what factors influence the development of technology.
- In general, economists study of the allocation of scarce resources.
 - resources needed in production of innovations are scarce;
 - but innovation implies also a structural change in which resources are used in and their productivity.
Some general questions

1. What determines how much effort is invested into the scientific process?
 ▶ Who are the decision makers: firms, governments, universities, scientists . . .
 ▶ How do they decide in which projects they invest?
 ▶ How do they decide how much to invest?

2. What are the consequences of innovation?
 ▶ For the innovator (appropriability issues)
 ▶ For industries (competition, prices, . . .)
 ▶ For economic growth
 ▶ For income distribution
 ▶ For social well-being

3. What role for policies?
 ▶ Why should governments intervene
 ▶ Should they only provide legal rules (IPRs) . . .
 ▶ . . . or also invest money and regulate private R&D
A first premise: knowledge and its measures

- Impossible to measure knowledge directly
- We can measure inputs to R&D activities
 - R&D expenditures
 - expenditures in Universities and research labs
 - workers in R&D
- We can measure outputs to R&D activities
 - patents
 - publications and citations
- All measures present strong limitations.
A second premise: market failures in knowledge

- markets’ invisible hand: \(p = MC = MB \)
- otherwise we have allocative inefficiencies (“deadweight losses”)
- sources of market failures in knowledge:
 1. knowledge presents positive externalities: social benefits are higher than private benefits
 2. indivisibilities
 3. uncertainty and moral hazard
 4. high sunk costs
- thus insufficient production and free-riding (quasi-public good)
Market failures in knowledge I

- Knowledge diffusion vs. (involuntary) knowledge spillovers
- Spillovers are due to:
 1. free flow of information
 2. human capital
 3. publications and presentations
 4. reverse engineering
- Sources of appropriation:
 1. patents
 2. secrecy
 3. lead time
 4. learning curves
 5. complementary assets and capabilities
Sources of technological knowledge

- Who are the innovators?
 1. private firms
 2. public institutions
 3. individual inventors

- different incentives

- different roles in the innovative process
 1. in US over 60% of basic research funded by government
 2. over 66% of applied research and 90% of development in private firms
Firms

- look for new processes and products
- in order to increase profits and market shares
- respond to market incentives and market conditions
- some research topics
 1. small vs. large firms in R&D and innovation
 2. age of firms and innovation
 3. persistence vs. re-shuffling in R&D and innovation (and firm size and growth)

- ...but not all innovation is the product of deliberate investment (tacit knowledge, learning by doing and by using, spillovers, etc.)
Some conditions for innovation in firms

- Incentives for firms
 1. demand pull (Schmookler), induced innovation (e.g. labour saving)
 2. technology push
 3. paradigms and trajectories
 4. appropriability

- Incentives for individuals within firms
 1. agency problems (with high uncertainty)
 2. ... but likely overestimation of the role monetary incentives
 3. property/control of key (complementary) intangible assets

- Some intra-firm conditions for innovation
 1. complementary assets
 2. organizational change
 3. problem-solving and division of labour
Evolutionary Theory I

- Evolutionary theory derives from work by Richard Nelson and Sidney Winter in the 1970s (in turn largely inspired by Schumpeter)
- Arose from dissatisfaction of standard neoclassical economics to explain many empirical facts about long-run economic development and technological change.
- Key features
 1. replaces profit-maximizing behavior of firms with decision rules applied routinely over a period of time.
 2. decision rules include routines for production, for managing workers, ordering inventory, advertising, or changing R&D.
 3. R&D in evolutionary theory has two fundamental mechanisms:
 - search for better techniques
 - selection of firms by the market
The search process

- search takes place if a firm is not satisfied with its current profits (???)
- search is more likely to yield results close to the current technology
- once a search is concluded, the firm decides whether or not the new technology is better

- search is cumulative
- is driven by technology specific opportunities
- is mainly local (no full picture of technology space)
Path dependence

- quasi-irreversibility of technology adoption
- due to high and increasing switching costs
- main causes:
 - learning by doing and using
 - technological interrelatedness and complementarities
 - network externalities
- examples: QWERTY, VHS/Betamax, PC/MAC
Diffusion of innovation

- fundamental questions:
 - what is the rate of adoption of an innovation?
 - what variables affect this rate?
 - how do policies affect this rate?

- early empirical studies (mainly in agricultural technologies) found S-shaped diffusion curves (Griliches 1957 on hybrid corn)

- main factors affecting diffusion:
 - relative advantage of the innovation
 - compatibility with current practices and complementary assets (modularity)
 - complexity
 - trialability (how easy to test)
 - observability (how easy to evaluate)
 - network effects (fundamental for ICT)
 - property rights
Diffusion example: diesel locomotives

- The first diesel locomotive was built in Europe in 1913.
- The first diesel locomotive in US in 1924.
- Slow and heavy: only advantage on steam less smoke and less risk of fire.
- In 1933 General Motors produces an improved model.
- First adopters rail lines not much involved in coal transport.
- At the end of WWII only 10% of locomotives were diesel.
- But then engineering refinements made cost per horse power fall.
- More reliable and less maintenance costs.
- On average firms passed from 10% to 90% of diesel in 9 years.
- 20% did it in 3-4 years.
- 10% in more than 14 years.
Diffusion example: environmental technologies

- slow rate of diffusion also of cost-effective technologies
- possible reasons:
 - lack of information
 - externality problems
 - agency problems
 - consumers have high discount rates
 - lack of access to credit markets
Models of diffusion: epidemic

- the contagion model:
 - innovation = information
 - adoption is slow at first
 - but then peaks quickly like a contagious illness

- implications:
 - adoption involves a positive externality
 - gradual diffusion is product of market failure
 - thus diffusion is a disequilibrium condition

- shortcomings:
 - once learned the new technology is adopted
 - technology does not change in the process
Models of diffusion: equilibrium models

- adoption is the result of rational calculation between costs and benefits
- adoption costs tend to decrease
- lock-in can be rational result of switching costs
- ex. probit models:
 - potential users differ in some important characteristics
 - thus, some firms benefit from adoption more than others
 - those with the highest benefit go first
 - examples of rank effects found to be important:
 - firm size
 - R&D investment
 - market share
 - market structure (ambiguous effects)
 - input prices
 - government regulations

- other equilibrium models:
 - stock models (as the stock of adopters increases benefit decrease)
 - order models (early adopters have higher gross returns, but costs may vary and reduce net returns)
Technology transfer

- types of technology transfer:
 - cooperative research and development
 - licensing or sale of intellectual property (existing firms or start-ups spin-offs)
 - technical assistance
 - public exchange of information (conferences, publications)

- government intervention?
 - market failure (high externalities, transaction and agency costs)
 - role of basic research
 - means of intervention: IPRs, R&D subsidies, R&D tax credits
Institutions for technology transfer

- types of technology transfer:
 - cooperative research and development
 - licensing or sale of intellectual property (existing firms or start-ups spin-offs)
 - technical assistance
 - public exchange of information (conferences, publications)

- government intervention?
 - market failure (high externalities, transaction and agency costs)
 - role of basic research
 - means of intervention: IPRs, R&D subsidies, R&D tax credits
Information technology

- information and digital goods:
 - experience goods
 - high returns to scale
 - quasi-public goods
- thus information is rarely sold in competitive markets
 \(p = MC \)
Price discrimination

- **first degree discrimination:**
 - a different price for each consumer
 - firms can appropriate all consumer surplus
 - requires full monopoly power

- **second degree discrimination:**
 - setting different prices for different goods (first-run movies vs. pay-per-view vs. DVDs; hardback vs. paperback)
 - firms can appropriate part of consumer surplus

- **third degree discrimination:**
 - setting different prices for different categories of users (Saturday stay over for airlines)
Market features

- high network externalities
- high switching costs
- lock-in and path-dependence
- implications for markets:
 - intense competition for new users
 - price discrimination
 - price discrimination between new and current users
- government intervention:
 - creation and dissemination of information
 - development, regulation, and usage of information infrastructure (including standards)
 - legal and institutional framework