An Evolutionary model of innovation, imitation and competition with heterogeneous agents

Paolo Zeppini

University of Amsterdam
Centre for Non Linear Dynamics in Economics and Finance (CeNDEF)

DIMETIC Strasbourg, 23 March - 3 April 2009
Outline

1. Introduction
2. The benchmark model
3. An extended model
4. Conclusions and further research
Purpose of this study

Two alternative ways to an innovative product or process are R&D investment and imitation of others’ innovation. Model the dynamics of innovation and imitation in a market with many firms and monopolistic competition.

- What role does heterogeneity of firms and their externalities play in the dynamics of innovation?
- What is the impact of factors like appropriability of knowledge on such dynamics?
- Are there homogenous equilibria where everybody innovate or imitate?
- What is the long run dynamics beyond stable equilibrium?

Benchmark model: innovation as costs reduction
Extended model: effects on demand (product differentiation).
Assumptions

An industry with N firms producing a slightly differentiated good. Fraction n^{INN} innovate, fraction n^{IM} imitate.

Products are homogeneous and symmetric wrt costs but not perfect substitutes.

Demand is linear and homogenous, $D(p) = a - bp$

Supply by each type is linear (quadratic costs), total supply is heterogeneous and equal to a weighted average of innovators and imitators, $S(p) = n^{INN} S^{INN}(p) + n^{IM} S^{IM}(p)$

Market equilibrium in period t: cobweb model and perfect foresight of price in next period (rational expectations)

$$a - dp_t = n^{INN}_{t-1} S^{INN}_t p_t + n^{IM}_{t-1} S^{IM}_t p_t$$ (1)
The theoretical framework

How do agents choose whether to innovate or to imitate? Adopt the discrete choice model of Brock and Hommes (1997): choice probabilities are given by a logit distribution

\[
\begin{align*}
n_t^{INN} &= \frac{e^{\beta \pi_t^{INN}}}{e^{\beta \pi_t^{INN}} + e^{\beta \pi_t^{IM}}} = \frac{1}{1 + e^{-\beta \Delta \pi_t}}, \quad n_t^{IM} = 1 - n_t^{INN} \\
\end{align*}
\]

(2)

The difference of profits \(\Delta \pi_t\) is a fitness measure. Profits read

\[
\begin{align*}
\pi_t^{INN} &= p_t S^{INN}(p_t) - c(S^{INN}(p_t)) - C = \frac{1}{2} s^{INN} p_t^2 - C \\
\pi_t^{IM} &= p_t S^{IM}(p_t) - c(S^{IM}(p_t)) = \frac{1}{2} s^{IM} p_t^2 \\
\end{align*}
\]

(3) (4)

\(\beta\) is the intensity of choice, \(c(\cdot)\) the production costs function and \(C\) the \(R&D\) fixed costs (constant in time).
Innovators vs imitators

Modelling imitation, two basic ideas:

1. imitation works better the more innovators are around.
2. imitators enjoy innovation up to a replicability factor.

\[s^{INN} = se^{bC}, \quad s^{IM} = \mu n^{INN} se^{bC} \] (5)

\(C \) is the fixed cost of R&D, \(b \) the benefits rate of innovation investment.

The factor \(\mu n^{INN} \) represents the positive dynamic externality of innovators on imitators.

Parameter \(\mu \in [0, 1] \) is a static level of replicability and is linked to the appropriability of knowledge.

Substitute into eq. (1) and obtain market equilibrium at time \(t \)

\[a - dp_t = n_{t-1}^{INN} se^{bC} p_t + n_{t-1}^{IM} \mu n_{t-1}^{INN} se^{bC} p_t \] (6)
Theoretical setting

A dynamical system

The model describes a uni-dimensional dynamic system where each of n_{t}^{INN}, p_{t}, π_{t}^{INN} and π_{t}^{IM} can work as state variable. The price at time t is

$$p_{t} = \frac{a}{d + s n_{t-1}^{INN} e^{bC} [1 + \mu (1 - n_{t-1}^{INN})]} \quad (7)$$

Substituting into the expression of innovators’ fraction (2) one obtains an uni-dimensional map $n_{t}^{INN} = f(n_{t-1}^{INN})$ with

$$f(x) = \frac{1}{1 + e^{\beta \left[\frac{1}{2} s e^{bC} a^2 \left\{ d + s e^{bC} x [1 + \mu (1-x)] \right\}^2 + C \right]}} \quad (8)$$
An example

Very low innovation benefits, $b << 1$, and perfectly replicable innovation $\mu = 1$. Two examples for two different values of innovation costs: $C = 0.4$ (stable) and $C = 4$ (unstable).

Other parameters are $a = 4$, $d = 1$, $s = 2$ and $\beta = 1$.
The system may converge to a heterogeneous stable equilibrium,

Time series of n^{INN}_t

Graphical analysis

Here $C = 1.1$ ($b = 1$, $\mu = 1$, $\beta = 2$).
The system may converge to a heterogeneous stable equilibrium,

Time series of n_t^{INN}

Here $C = 1.1$ ($b = 1$, $\mu = 1$, $\beta = 2$).
or converge to a stable 2-cycle:

Time series of n_t^{INN}

![Graph of time series of n_t^{INN}](image)

Graphical analysis

![Graphical analysis](image)

Here $C = 1.2$ ($b = 1$, $\mu = 1$, $\beta = 2$).
or converge to a stable 2-cycle:

Time series of n_t^{INN}

Graphical analysis

Here $C = 1.2$ ($b = 1$, $\mu = 1$, $\beta = 2$).
Bifurcation diagrams: the intensity of choice β

A BD tells stability analysis and qualitative behaviour.

Here a period doubling bifurcation. The industry is stable only for low intensity of choice.

\[n_t^{INN} \text{ wrt } \beta \]

\[p_t \text{ wrt } \beta \]

\[(\mu = 0.7, \ s = 2, \ C = 1, \ b = 0.2, \ a = 4 \text{ and } d = 1). \]
Bifurcation diagrams: the intensity of choice β

A BD tells stability analysis and qualitative behaviour.

Here a period doubling bifurcation. The industry is stable only for low intensity of choice.

B.D. of n_t^{INN} wrt β

B.D. of p_t wrt β

$(\mu = 0.7, s = 2, C = 1, b = 0.2, a = 4$ and $d = 1)$.
Intensity of choice β (II)

Period doubling and period halving bifurcations. With lower replicability μ and lower s the industry returns to be stable when the intensity of choice becomes large enough.

$B.D. \text{ of } n_t^{INN} \text{ wrt } \beta$

$B.D. \text{ of } p_t \text{ wrt } \beta$

($\mu = 0.4$, $s = 1$, $C = 1$, $b = 0.2$, $a = 4$ and $d = 1$)
Intensity of choice β (II)

Period doubling and period halving bifurcations. With lower replicability μ and lower s the industry returns to be stable when the intensity of choice becomes large enough.

B.D. of n_t^{INN} wrt β

B.D. of p_t wrt β

$(\mu = 0.4, s = 1, C = 1, b = 0.2, a = 4 \text{ and } d = 1)$
The replicability (or imitators efficiency) μ

Up to a level the system is stable and replicability hurts innovation. Above the industry becomes unstable: more and more firms shift behaviour periodically. For $\mu = 1$ almost all firms shift every period.

$(\beta = 2, s = 2, b = 0.2, C = 1, a = 4$ and $d = 1)$
Innovation benefits rate b

Two values of the intensity, $\beta = 1.2$ (blue) and $\beta = 2$ (red). When innovation benefits grow larger, more firms imitate. Threshold value of benefits below which the industry is unstable. Such a threshold is larger for higher intensity of choice.

$(s = 2, C = 1, \mu = 0.7, a = 4 \text{ and } d = 1)$
Comments

- Costly agents survive in a deterministic environment, thanks to the opposing forces of innovation externality.
- Plenty of stable equilibria where both agents are present.
- With $C = 0$ and $\mu = 1$ the population does not split equally, again because of innovation externality.
- Role of replicability not univocal. As μ grows, innovators decrease up to a point, when the system becomes unstable.
- A larger intensity of choice makes the industry unstable, but not always.
- Instability boils down to period 2 oscillations: still economic coherence. Chaos is avoided.
Innovation that also affects demand

Not just costs reduction but also product differentiation: prod. different. ⇒ substitutability ↓ ⇒ demand shifts outwards.

Define a dynamic product substitutability ξ_t and assume the more innovators are around, the lower substitutability:

$$\xi_t = \xi(1 - n_t^{INN}) \quad (9)$$

Demand shifts outwards (Lin and Saggi, 2002):

$$D_t(p_t) = a - dp_t \over 1 + \sigma(1 - n_t^{INN}) \quad (10)$$

Generalized substitutability $\sigma = \xi N$: a measure of competition.

The market equilibrium in period t becomes

$$a - dp_t \over 1 + \sigma(1 - n_t^{INN}) = n_{t-1}^{INN} se^{bC} p_t + n_{t-1}^{IM} \mu n_{t-1}^{INN} se^{bC} p_t \quad (11)$$
Examples of dynamics

The industrial dynamics becomes irregular. Two examples of price and innovators fraction time series:

Time series of $p_t (\sigma = 90)$

Time series of $n_t^{INN} (\sigma = 120)$

Here $\beta = 5$, $C = 1$, $b = 0.5$, $\mu = 0.4$, $s = 2$, $a = 4$ and $d = 1$.
Examples of dynamics

The industrial dynamics becomes irregular. Two examples of price and innovators fraction time series:

Time series of $p_t \ (\sigma = 90)$

<table>
<thead>
<tr>
<th>0</th>
<th>20</th>
<th>40</th>
<th>60</th>
<th>80</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0.4</td>
<td>0.6</td>
<td>0.8</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>

Time series of $n^{INN}_t \ (\sigma = 120)$

<table>
<thead>
<tr>
<th>0</th>
<th>20</th>
<th>40</th>
<th>60</th>
<th>80</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.2</td>
<td>0.4</td>
<td>0.6</td>
<td>0.8</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Here $\beta = 5$, $C = 1$, $b = 0.5$, $\mu = 0.4$, $s = 2$, $a = 4$ and $d = 1$.
The intensity of choice β

Bifurcation diagrams reveal irregular behaviour for large parameters regions.
Periodic orbits other than 2-cycles, as period 3, for instance.

Here $\sigma = 80$, $C = 1$, $b = 0.5$, $\mu = 0.4$, $s = 2$, $a = 4$ and $d = 1$.
The generalized substitutability σ

As σ gets larger the industry undergoes period 3 cycles, irregular behaviour, 4-cycles, 2-cycles, stable equilibrium.

Here $\beta = 5$, $C = 1$, $b = 0.5$, $\mu = 0.4$, $s = 2$, $a = 4$ and $d = 1$.
The replicability factor μ

Several orbits with different period.
Irregular behaviour for mid values of replicability.

Here $\sigma = 80$, $\beta = 5$, $C = 1$, $b = 0.5$, $s = 2$, $a = 4$ and $d = 1$.
The replicability factor μ

Several orbits with different period.
Irregular behaviour for mid values of replicability.

B.D. of p_t

Here $\sigma = 80$, $\beta = 5$, $C = 1$, $b = 0.5$, $s = 2$, $a = 4$ and $d = 1$.
Basin of attraction for β and σ

Red = stable equilibrium, Blue = 2-cycle, Green = 3-cycle, Yellow = 4-cycle, Cyan = 5-cycle, Purple = 6-cycle, Deep purple = 7-cycle, Orange = 8-cycle, Deep green = 9-cycle and Deep red = 10-cycle.

Non convergence is white, divergence is black.

Here $\mu = 0.4$, $C = 1$, $b = 0.5$, $s = 2$, $a = 4$ and $d = 1$.
Final remarks

- When innovation also affects demand the industrial dynamics may become irregular.
- Several new periodic orbits appear other than 2-cycles and also a-periodic paths.
- In particular, period 3 cycles imply topological chaos (Li and Yorke, 1975).
- Loss of economic coherence with respect to the benchmark model, where innovation only affects supply.
- In general the model shows how the interplay between innovation and imitation produces complex dynamics.
- The interaction of factors as replicability and competition plays a major role.
Further research

- Model competition directly by making innovation costs and benefits dependent on firms’ fractions.

- Wait option of imitation strategy: only imitate successful innovations. Stochastic model.

- Increase the heterogeneity of firm population:
 - fast and slow imitation, asynchronous updating of routines: capture persistence.
 - heterogeneous expectations of price.

- Strategic innovation and imitation: bring Stackelberg model into the evolutionary discrete choice framework.